ИЗМЕРЕНИЯ В СЕТЯХ PON. ОБЗОР ОБОРУДОВАНИЯ

змерение параметров оптических линий – процесс ответственный и трудоемкий. В сетях РОN трудоемкость измерений значительно возрастает. Продолжая тематику измерений в сетях РОN, начатую в предыдущем номере журнала, рассмотрим некоторые приборы, используемые для измерения параметров сетей, и их основные характеристики.

Суть технологии РОN заключается в том, что между центральным узлом и абонентскими узлами создается полностью пассивная оптическая сеть древовидной топологии. В промежуточных узлах дерева размещаются компактные пассивные оптические разветвители (сплиттеры), не требующие питания и обслуживания. Основная идея архитектуры РОN — использование только одного приемопередающего модуля в центральном узле связи для передачи информации множеству абонентских устройств и приема информации от них.

Число абонентских узлов, подключенных к одному приемопередающему модулю в центральном узле, может быть настолько большим, насколько позволяют бюджет мощности и максимальная скорость приемопередающей аппаратуры. К одному волокну можно подключить до 64 абонентов, следовательно, для подключения одного дома на тысячу квартир достаточно всего 16 волокон. Для сдачи в эксплуатацию PONсети в таком доме требуется провести 6 тыс. измерений. Поэтому правильное измерение параметров линий связи сети во время монтажа позволяет снизить временные и экономические затраты при ее запуске в эксплуатацию.

Во время монтажа PON должны быть измерены два основных параметра: измерение затухания линии и возвратных оптических потерь (ORL — optical return loss).

Измерения с помощью рефлектометра не являются обязательными — достаточно измерить потери, поскольку линия от станции до сплиттера — это 2-3 километра кабеля без сва-

рок. Потери можно измерить с помощью источника и измерителя оптической мощности с использованием измерителя оптических потерь (OLTS — optical loss test sets). Для уменьшения временных затрат на проведение измерений в современных тестерах используется автоматический режим.

При выборе измерителя оптических потерь имеет смысл обратить внимание на наличие следующих характеристик:

- автоматический режим измерения затухания линии;
- динамический диапазон работы измерителя в автоматическом режиме, достаточный для тестирования компонентов сети с большим затуханием (например, сплиттеров);
- работа на трех длинах волн (1310/1490/1550 нм);
- достаточный объем памяти измеренных значений;
- простота и удобство в использовании;
- возможность передачи данных измерения в компьютер для формирования отчетов.

В соответствии с рекомендациями МСЭ-Т G.983 (ITU-T G.983) максимальное затухание линии сети PON должно быть не более 20—30 дБ. Поэтому погрешность измерения затухания, обусловленная погрешностью измерителя оптической мощности и нестабильностью используемого источника излучения, может быть в пределах 0,8—1,0 дБ.

Во время сдачи сети PON среднего 400-квартирного дома необходимо провести измерение линии каждого абонента на двух (а лучше на трех) длинах волн в обе стороны. Это составляет более 2400 измерений! Для сокращения времени

измерения и снижения вероятности ошибок оператора прибор должен иметь автоматический режим. В этом режиме измеряются затухание и возвратные потери в линии с обеих сторон. Некоторые модели приборов измеряют также и длину линии.

Полученные данные должны сохраняться в энергонезависимой памяти прибора. Объем памяти должен быть достаточен для хранения не менее тысячу результатов измерений. Для просмотра и обработки такого количества результатов измерений прибор должен подключаться к компьютеру. Программное обеспечение прибора должно формировать отчетную документацию, удобную для чтения и анализа результатов измерений.

Для удобства работы с прибором он должен быть небольшим, легким, иметь противоударный чехол с ремнем для крепления, а также подсветку дисплея для использования в малоосвещенных местах. Важной характеристикой прибора является время работы от аккумуляторной батареи, так как прибор должен ежедневно работать не менее 8 ч непрерывно.

Для выявления таких неисправностей в сети, как изгибы, обрывы или некачественные сварки волокон, удобно использовать визуальный локатор повреждений — красный лазер, который излучает свет на длине волны 650 нм и значительно упрощает поиск неисправностей: в местах повреждений волокно светится красным светом.

Сегодня российский рынок приборов для измерения параметров PON-сетей представлен несколькими компаниями.

Компания EXFO предлагает приборы серий FOT-600 и FOT-930. Оптический тестер FOT-600 имеет небольшую погрешность и позволяет проводить односторонние измерения

потерь линии, автоматически определяя длину волны источника, что сокращает время измерения. Информация об измерениях отображается на большом жидкокристаллическом индикаторе. Время непрерывной работы прибора — 50 ч. Многофункциональный тестер FOT-930, в отличие от тестера FOT-600, позволяет проводить двусторонние измерения параметров линии (ORL, потери, длину) в автоматическом режиме. Прибор требует предварительной конфигурации. Программное обеспечение для формирования отчетов одинаково

Характеристики приборов для измерения параметров сетей РОМ

Модель	FOT-600	FOT-930	KI-7340C	OFI-2000	ТОПАЗ-7000-L
Длины волн, нм	1310; 1490; 1550				
Относительная нестабильность, дБ	<0,1	<0,1	<0,06	<0,04	<0,07
Мощность, дБм	>-4,5	>-7	>-10	>-3,5	>-4
Диапазон измеряемой мощности, дБм	-70+10	56 дБ*	−70+5	60 дБ*	− 75+6
Погрешность, дБ	0,3	0,5	0,4	0,5	0,3
Автоопределение длины волны	Да (при уровне > -40 дБм)	Да	Да (при уровне > -50 дБм)	Да	Да (при уровне > -50 дБм)
Анализ годности линии	Да	Да	Да	Да	Нет
Визуальный локатор повреждений	Нет	Да	Нет	Да	Да
Количество ячеек памяти	>1000	1024	1000	1000	1200
Двустороннее измерение	Нет	Да	Да	Да	Да
ПО для формиро-вания отчетов	Да	Да	Да	Да	Да
Дисплей	жки	TFT 3,8" 320×240	жки	TFT 5,7" 320×240	жки
Время работы, ч	50	9	190	8	10
Габаритные размеры, мм	190×100×62	250×125×75	190×130×70	200×200×80	80×50×140
Масса, кг	0,48	1,0	0,5	1,8	0,4

^{*} Диапазон измеряемых потерь.

подходит для тестеров обеих серий.

Компания Kingfisher предлагает измеритель потерь серии KI-7340C. Прибор выполнен в малогабаритном корпусе и имеет жидкокристаллический индикатор. Главным его преимуществом является длительное время работы — 190 ч.

Преимущество оптического измерителя потерь OFI-2000, выпускаемого компанией JDSU, — наличие мощных высокостабильных лазеров. Тестер имеет большой цветной дисплей с диагональю 5,7", что облегчает чтение результатов измерений. Однако габариты и вес этого прибора затрудняют его использование в полевых условиях.

Научно-производственной компанией "СвязьСервис" производится многофункциональный измеритель потерь ТОПАЗ-7000-L (см. рис.). Он имеет три источника излучения — 1310, 1490 и 1550 нм, рекомендованных МСЭ-Т G.983 (ITU-Т G.983) для измерителей оптической мощности и визуальных локаторов повреждений. Комплект приборов позволяет производить в автоматическом режиме двусторонние измерения как прямых, так и возвратных потерь (ORL) линии на трех длинах волн, а также ее длину. Объем памяти позволяет хранить до 1200 измерений, а подсветка дисплея облегчает работу при малой освещенности. Прибор имеет порт для связи с компьютером и прост в управлении. Программное обеспечение позволяет загрузить данные измерений в компьютер и сформировать отчет по результатам измерений.

В таблице приведена краткая техническая информация о приборах, предназначенных для измерения параметров сетей PON. При выборе прибора также следует учитывать наличие сертификата об утверждении типа средств измерений.